Parameterized complexity and improved inapproximability for computing the largest j-simplex in a V-polytope

نویسنده

  • Ioannis Koutis
چکیده

We consider the problem of computing the squared volume of the largest j-simplex contained in an n-dimensional polytope presented by its vertices (a V -polytope). We show that the related decision problem is W [1]-complete, with respect to the parameter j. We also improve the constant inapproximability factor given in [Packer, 2004, Discrete Applied Mathematics, 134], by showing that there are constants μ < 1, c > 1, such that it is NP-hard to approximate within a factor of c the volume of the largest bμnc-simplex contained in an n-dimensional polytope with O(n) vertices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameterized (in)approximability of subset problems

We discuss approximability and inapproximability in FPT-time for a large class of subset problems where a feasible solution S is a subset of the input data. We introduce the notion of intersective approximability that generalizes the one of safe approximability introduced in (J. Guo, I. Kanj and S. Kratsch, Safe approximation and its relation to kernelization, IPEC 2011) and show strong paramet...

متن کامل

A remark on asymptotic enumeration of highest weights in tensor powers of a representation

We consider the semigroup $S$ of highest weights appearing in tensor powers $V^{otimes k}$ of a finite dimensional representation $V$ of a connected reductive group. We describe the cone generated by $S$ as the cone over the weight polytope of $V$ intersected with the positive Weyl chamber. From this we get a description for the asymptotic of the number of highest weights appearing in $V^{otime...

متن کامل

A Linear-Time Parameterized Algorithm for Node Unique Label Cover

The optimization version of the Unique Label Cover problem is at the heart of the Unique Games Conjecture which has played an important role in the proof of several tight inapproximability results. In recent years, this problem has been also studied extensively from the point of view of parameterized complexity. Chitnis et al. [FOCS 2012, SICOMP 2016] proved that this problem is fixed-parameter...

متن کامل

On Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs

Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...

متن کامل

COMPUTING WIENER INDEX OF HAC5C7[p, q] NANOTUBES BY GAP PROGRAM

The Wiener index of a graph Gis defined as W(G) =1/2[Sum(d(i,j)] over all pair of elements of V(G), where V (G) is the set of vertices of G and d(i, j) is the distance between vertices i and j. In this paper, we give an algorithm by GAP program that can be compute the Wiener index for any graph also we compute the Wiener index of HAC5C7[p, q] and HAC5C6C7[p, q] nanotubes by this program.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 100  شماره 

صفحات  -

تاریخ انتشار 2006